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Scaling properties of particle density fields formed in simulated turbulent flows
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Direct numerical simulations of particle concentrations in fully developed three-dimensional turbulence were
carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent
fluid fields with Taylor microscale Reynolds numbers (Rel) of 40, 80, and 140 were generated by solving the
Navier-Stokes equations with pseudospectral methods. Large-scale forcing was used to drive the turbulence
and maintain temporal stationarity. The response of the particles to the fluid was parametrized by the particle
Stokes number St, defined as the ratio of the particle’s stopping time to the mean period of eddies on the
Kolmogorov scale (h). In this paper, we consider only passive particles optimally coupled to these eddies
(St'1) because of their tendency to concentrate more than particles with lesser or greater St values. The
trajectories of up to 703106 particles were tracked in the equilibrated turbulent flows until the particle
concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields
was characterized by the multifractal singularity spectrumf (a), derived from measures obtained after binning
particles into cells ranging from 2h to 15h in size. We observed strong systematic variations off (a) across
this scale range in all three simulations and conclude that the particle concentration field is not statistically
self-similar across the scale range explored. However, spectra obtained at the 2h, 4h, and 8h scales of each
flow case were found to be qualitatively similar. This result suggests that the local structure of the particle
concentration field may be flow independent. The singularity spectra found for 2h-sized cells were used to
predict concentration distributions in good agreement with those obtained directly from the particle data. This
singularity spectrum has a shape similar to the analogous spectrum derived for the inertial-range energy
dissipation fields of experimental turbulent flows at Rel5110 and 1100. Based on this agreement, and the
expectation that both dissipation and particle concentration are controlled by the same cascade process, we
hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of
the spatially averaged statistical properties of preferentially concentrated particles in higher Rel turbulent
flows. @S1063-651X~99!00807-7#

PACS number~s!: 47.27.Eq, 47.11.1j, 47.53.1n, 47.55.Kf
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I. INTRODUCTION

Particle-laden turbulent flows have been investigated
recent years by direct numerical simulations~DNS!. A spe-
cial behavior known as preferential concentration has b
described as the tendency of particles to concentrate m
strongly when their gas drag stopping times (tp) are close to
the turnover time of the smallest turbulent structures~eddies
and vortex tubes! @1–3#. This effect has also been observ
in the laboratory@4,5#.

The concentration process has been parametrized by
Stokes number St, defined as the ratio oftp to some eddy
turnover time. Squires and Eaton@1,2# used the turnover time
tL of the largest eddies, on the outer or integral scaleL,
where the energy that drives the turbulence is introduc
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Instead Wang and Maxey@6#, Eaton and Fessler@3#, and this
paper use the turnover timeth of the smallest eddies, on th
inner or Kolmogorov scaleh, the lowest scale of the turbu
lent cascade, where energy is dissipated. Particles with
51 so defined preferentially concentrate at spatial sca
comparable toh @7#. Although it is not clear how turbulen
structures direct the flow of particles into highly conce
trated regions, the process is very sensitive to small de
tions of St from this optimum value@8#.

In this paper we focus on St51 particles and attempt to
characterize the nonuniform structure of their concentrat
fields in a way that allows statistical predictions to be ma
over a wide range of turbulent flow strengths. We hypo
esize that the nonuniform particle field is akin to the turb
lent energy dissipation field whose statistical properties h
been well described by the so-called ‘‘singularity spectrum
f (a) @9,10#. This spectrum has been shown to be both sc
invariant and flow independent in the inertial and dissipat
range of scales. Its interpretation as a multifractal dimens
follows from its role as an exponent relating the spatial d
tribution of energy dissipation to scales that span the iner
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PRE 60 1675SCALING PROPERTIES OF PARTICLE DENSITY . . .
range. We believe the particle density field may also ben
from a multifractal analysis and may be aptly described b
singularity spectrum.

In Sec. II we present the governing equations and bou
ary conditions for the turbulent fluid and the particle traje
tories. The numerical methods used to solve these equa
and to evolve both the gas and particles to a statistic
stationary state are described. We also include a tabl
simulation parameters for the three Reynolds numbers
studied, and explain why particular values were chosen
measure for the particle concentration field and its role in
multifractal method is described in Sec. III. The emphasis
this section is on the practical aspects of determining
singularity spectrum. Useful numerical reductions that w
employed to optimize the necessary computations are
rived in the Appendix. Our results and interpretations are
subject of Sec. IV wherein we demonstrate how the sin
larity spectrum depends on the spatial binning size of
concentration measure and the flow Reynolds number Rl .
A summary including remarks on this work and motivatio
for future work follows in Sec. V.

II. NUMERICAL SIMULATIONS

A. Gas and particle equations and boundary conditions

The equations governing the velocity field of an inco
pressible fluid and particles that respond with inertia to
drag forces are

Ui ,i50, ~1!

]Ui

]t
1U jUi , j52

P,i

r
1nUi , j j , ~2!

]Vi

]t
5

1

tp
$Ui@Xi~ t !,t#2 Vi~ t !%, ~3!

whereU is the gas velocity,V is the particle velocity,P is the
gas pressure,r is the gas mass density,n is the kinematic
viscosity, andtp is the particle gas drag stopping time. Equ
tion ~2! is a simplified form derived by Squires and Eaton@1#
that neglects corrections to the Stokes drag terms by ass
ing the mass density of a single particle is much greater t
r and the particle size is much smaller thanh. The influence
of particles on the turbulence by momentum exchange is
considered in this study. The gas equations are solved i
Eulerian frame of reference relative to the mean flow, wh
Eq. ~3! is solved in a Lagrangian frame.

The DNS code utilized in our study uses a modified v
sion of the pseudospectral algorithm developed by Rog
and Moin @11,12#, and later extended by Squires and Eat
@1# to include gas-coupled particles. The code simula
forced stationary isotropic turbulence in a three-dimensio
~3D! computational box 2p radians on a side. The forcing i
introduced at the wave numberkforcing5A14 with the scheme
described by Eswaran and Pope@13#. Fluid velocities are
found on a set of nodes uniformly spaced throughout
box. Periodic boundary conditions are imposed on the
velocities at the sides of the computational domain. So w
particles are free to roam outside of the computational b
their modulo 2p positions are employed when the flu
fit
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forces imparted to them are calculated. A third-order Tay
series interpolation scheme is used to determine force vec
at the folded particle positions from their values at the ei
nearest neighbor nodes.

The pseudospectral algorithm’s high degree of parallel
and vectorizable structure were exploited to implemen
efficiently in the multitasking environment of the NAS Cra
C90 facility. The particle integrations were also complete
vectorized and executed as concurrent tasks on all 16 pro
sors.

B. Reaching equilibrium

Before a detailed analysis of the particle concentrat
field was made, both the gas and particle components w
fully evolved to a point of statistical equilibrium. The initia
gas state of our first case was specified following the sche
by Lee and Reynolds@14#, and in subsequent cases th
equilibrated gas fields from previous runs were used. T
gas, without particles, was evolved until the Kolmogor
scale (h) reached a steady value given byhkmax51.3, where
kmax is the maximum useful wave number as determined
Rogallo’s dealiasing scheme. This was done for a cons
gas viscosity and node spacing by slowly adjusting the fo
ing strength for approximately six periods of the integ
scale eddies. The particles were introduced, after the
equilibrated, with zero velocities relative to the compu
tional box, and at random locations therein. During t
evolving phase the particles were binned periodically int
uniform grid of cells, centered over the computational nod
in order to compute the rms value of the cell concentratio
The particle concentration field was considered to be equ
brated when the rms reached a steady value. This typic
took another six large eddy turnover times. Following t
procedure described above, we generated three statisti
stationary turbulent fields at Rel values 40, 80, and 140, an
evolved corresponding particle concentration fields conta
ing 13106, 103106, and 703106 particles, respectively
For each case, ten temporal realizations of the concentra
fields separated by roughly one-half of a large eddy per
were produced and archived.

C. Simulation parameters

The simulation parameters were selected to ensure
equate particle statistics and spatial resolution of the sma
turbulent scales. As the Reynolds number increases, the
mogorov scale structures shrink according to the scaling
h'7.6LRel

23/2. More computational nodes are required
maintain a fixed resolution of theh scale as the Reynold
number is increased. More particles are also needed to m
tain a useful population of particles within the more num
oush-scale concentration zones. In all three cases, the n
ber of particles used was the number necessary to give
overall box-averaged cell concentration (Nave) equal to at
least 2 for cells 2h on a side. With this value, the initially
uniform density of particles produced maximum cell occ
pancies ranging between 200 and 800 particles. Our inte
in preferentially concentrated particles compelled us to c
sider onlytp values close to the period ofh-sized eddies.
This period, known as the dissipation time scaleth , was
calculated with the formulath5An/e, where e is the
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volume-averaged energy dissipation@15#. Simulations of
particle concentrations over a range oftp values were done
in order to estimate the value that maximized the rms part
number density for bin sizes equal to 2h. Thetp values for
the Rel540 and 80 cases were found to be quite close to
dissipation time. The Rel5140 case, however, could not b
spanned as thoroughly because the computer time avai
to us allowed only a fewtp values to be explored. For thi
case we assignedtp a value equal toth .

The input and time-averaged output parameter values
each case are tabulated in Table I. Lengths are express
radians and times in computational units.

III. MULTIFRACTAL ANALYSIS

Fractal models of intermittence in turbulence have be
developed to describe the cascade of energy from the lar
to smallest eddies@10,16,17#. Measures generated by suc
processes are typically highly nonuniform and intermitte
and possess rich scaling properties. The observed scalin
the velocity structure constants provided the first test of th
models@16,18,17#. Uniform fractal models, which assume
that turbulent energy was evenly divided among eddies
decreasing size, failed to predict these scalings. The assu
tion of a nonuniform partitioning of energy into smaller e
dies led to multifractal models which proved a better ma
to the data@16,18#. A key element in the multifractal mode
is the singularity spectrumf (a). It serves as an exponent i
the scaling laws for the velocity structure constants and o
statistical measures.

The methods developed in recent years to analyze a v
ety of multifractal measures, including the energy dissipat
field of fully developed turbulence, have inspired us to
them on the particle concentration fields generated in
study. This approach is well suited for describing the stati
ary statistical properties of processes far from equilibrium
this section we describe how the method can be applie
the particle concentration field. We present mathematical
pressions for quantities that characterize the field’s non
form structure and can serve as exponents in scaling law
concentration distribution functions.

A measure of the particle density field that is local, su
ably normalized, and captures its nonuniformity is a key

TABLE I. Simulation parameters.

Parameter Case I Case II Case

Nodes/side 64 128 288
Viscosity 0.1 0.025 0.00625
Np 106 107 73107

Rel 39 79 141
Turbulent energy 40 23 12
Dissipation 204 74 27
hkmax 1.4 1.3 1.3
h ~radians! 0.047 0.021 0.0098
l ~radians! 0.44 0.28 0.17
L ~radians! 0.58 0.44 0.35
tp 0.021 0.017 0.015
th 0.022 0.018 0.015
tl 0.2 0.3 0.47
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ement in this analysis. The local measure we use is define
a spatial scalel that is normalized relative to the comput
tional box size. The measure is calculated by binning allNp
particles into a lattice of cubic cells,l on a side, that partition
the computational volume uniformly intol 23 cells. Before
they are assigned to a cell, particle positions are fold
modulo 2p back inside the volume to ensure the inclusion
all simulation particles in the binning precedure. The avera
occupancyNave of a cell for a uniformly distributed particle
field is Npl 3. We define a cell’s concentration factor by no
malizing the number of particles found in the cell,Ni , by
Nave,

Ci[Ni /Nave5Pi l
23, ~4!

where Pi5Ni /Np is interpretable as a probability measu
and, as such, can be related to the cell size through the
nition

Pi5 l a i. ~5!

For a givenl, the set of exponentsa i provide an alternative
description of the set of cell concentration factors.

In the limit Np˜`, bothP anda converge to a bounded
continuum of values. Normalized volume and mass distri
tion functions fora can be written in forms that relate them
to first order, to the cell size,

FV~a!da52r~Aln~1/l !2 f l (a)23da, ~6!

and

FM~a!da52rAln~1/l !2 f l (a)1ada, ~7!

wherer is a constant of order unity andf l(a) is thesingu-
larity spectrum. The l subscript serves as a reminder that t
spectrum is in general a function of the cell size. The valid
of theseAnsätzehas been demonstrated in an earlier study
the distribution of nearest neighbor distances of fractal s
@19#.

In this paper we will be interested in the similarly norma
ized distribution functions forC which can be related to the
above via the Jacobian transformation that relatesC to a:

FV~C!dC5FV~a!~dC/da!da ~8!

and

FM~C!dC5FM~a!~dC/da!da. ~9!

The cumulative versions of these distributions are

FV~.C!5E
C

Cmax
FV~C!dC ~10!

and

FM~.C!5E
C

Cmax
FM~C!dC, ~11!

whereCmax is C’s upper bound.
The Appendix presents parametric expressions advoc

by Chhabra and co-workers@20,9# to evaluatea and f (a)
directly from the set of cell measures. These authors disc
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PRE 60 1677SCALING PROPERTIES OF PARTICLE DENSITY . . .
other direct methods for computing these scaling expon
and point out shortcomings that relate to their sensitivity
the logarithmic prefactors present in Eqs.~6! and ~7!. In the
Appendix we derive alternative expressions that are m
computationally efficient and make transparent their conn
tion with the volume distribution ofP,FV(P). These expres-
sions are, from Eqs.~A5! and ~A6!,

a l~q!5
^Pq ln P&

^Pq& ln l
, ~12!

f l~q!5
^Pq ln Pq&2^Pq& ln ^Pq&

^Pq& ln l
~13!

where^ & denotes an average overP weighted byFV(P).
The expressions above were used to evaluatea and f

using discrete estimates ofFV(P) derived from the particle
concentration fields generated in our simulations.

IV. RESULTS

A. a„q…, f „q…, and f „a…

Both spatial and temporal realizations of the particle c
centration field were generated and averaged in orde
smooth out fluctuations. The spatial realizations were m
by shifting the origin of the lattice of cells in each directio
by half of a cell size. Ten temporal realizations were gen
ated at intervals of approximately one-half the integral ti
scaletL .

For a single snapshot of the particle density field,
FV(P) distributions from all spatial realizations were ave
aged and the average was used to computea andf using the
formulas presented in the preceding section. They w
evaluated on a 2D grid ofl and q values. Thel grid was
uniformly spaced on a logarithmic scale in a range betw
2h and 15h. The grid of q values was uniformly space
between 0 and 20. Linear least squares fits to the se
exponents along thel direction were made for all values ofq
in order to interpolate between and extrapolate beyond tl
grid points.

Figure 1 shows howa and f, determined from the Rel

580 simulations, vary withl at a selected set ofq values.
The abscissa is normalized relative to theh scale of the flow.
In general, the exponents show a strong systematic de
dency on cell size across the grid of scales. This scale
pendence is made more evident in Fig. 2 where„a, f (a)…
values are plotted for cell sizes equal to 2h, 4h, and 8h at
all three Rel values.

B. Correlation dimensions

From the singularity spectra we determined the corre
tion dimension, defined as 2a2 f at q52, for particle con-
centrations at the 2h scale. A value of 2.67 was found for a
three simulations. A study of 2D projections of simulat
particle concentrations in turbulent channel flows@21# re-
ported a value of 1.68 for St51 particles over a spatial sca
where these particles are most concentrated. This comp
well with our value after allowing for the difference betwee
the support dimension of our measure~5 3! and theirs~5 2!.
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C. Concentration distributions

The singularity spectra shown in Fig. 2 were used to c
culateFV(C) and FM(C) distributions, using Eqs.~6!–~9!,
for comparison with their discretized estimates. These p
dictions for the differential and cumulative distributions a
presented in Figs. 3~a!–3~d!. All discretized distributions in-
cluded data from all temporal realizations of the particle d
sity field. The cell size was 2h. The overall agreement sug
gests that theAnsätze used to represent the distribution

FIG. 1. ~a! a and ~b! f vs normalized cell size on a linear-lo
plot for a selected set ofq values. Points represent averaged valu
calculated from ten temporal realizations of the particle concen
tion field formed in the Rel580 flow simulations. Solid lines, la-
beled byq, represent linear least squares fits to the points and
extended to theh length scale. For all values ofq botha andf vary
strongly with cell size.



d

av
te

is-
as
kl

ve

1

ve
n
a-
ce
of
ie

e
e
th
e
r

ical
les
ity
ds,
res-

in-
ws.
the
l to
e-

t the

-
um-

est
s is

ve
ter-
rity
hip
-
n-
of

St
um.
-
e it
size

of
ely
tion

ro-
SA
ter
and
nd

o

ar

pe
-
-

1678 PRE 60HOGAN, CUZZI, AND DOBROVOLSKIS
analytically are valid. The divergence at smallC is probably
due to the undersampling effects discussed in the Appen

D. The energy dissipation field

Velocity derivatives and passive turbulence scalars h
previously been shown to have a multifractal charac
@18,22#. Specifically, the multifractal character of energy d
sipation in turbulence is believed to be the result of a c
cading process where energy at the largest scale tric
down to smaller scales in a nonuniform manner@16#. The
singularity spectrum for energy dissipation has been deri
from laboratory, atmospheric, and numerical data@9,23#. The
spectrum shown by open circles in Fig. 2, taken from Fig.
in Meneveau and Sreenivasan@10#, is a composite of results
from flows at Rel5100 and 1100.

The shape and extent of the dissipation spectrum are
similiar to the singularity spectra for particle concentratio
especially at the low-a end where dissipation and concentr
tion are both greatest. The divergence between the con
tration spectra towardsa53 reflects the incompleteness
the particle concentration measure, due to an insuffic
number of particles to fill all the cells~see Appendix!. We
point out that the qualitative agreement in Fig. 2 may sugg
a deep connection between the cascade process, presum
control the flow of turbulent energy to smaller scales, and
process of particle concentration. This notion is consist
with the fact that strain rate is an important shared prope
of both particle accumulation@24,2# and dissipation.

FIG. 2. Plots off (a) vs a at cell sizes corresponding to 2h,
4h, and 8h. The f anda values were taken from line fits similar t
the ones shown in Figs. 1~a! and 1~b!. Symbols starting from the
right correspond toq values 0,1,2,3,4,5,7,10,20. The error bars
the rms values derived from ten temporal realizations. Thef (a)
curves for cases Rel540 ~triangles!, Rel580 ~squares!, and Rel
5140 ~circles! have a similiar shape at all three length scales. O
circles are a composite off (a) points presented in Fig. 10 of Me
neveau and Sreenivasan@10# for turbulent energy dissipation de
rived from laboratory (Rel5100) and atmospheric (Rel51100)
data.
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V. SUMMARY AND DISCUSSION

In this paper we have investigated the stationary statist
properties of simulated number density fields of partic
preferentially concentrated in turbulent flows. Singular
spectra, characterizing the nonuniformity of these fiel
were derived to be used as exponents in analytical exp
sions for theFV(C) andFM(C) distributions. We found that
the functional form of these spectra is sensitive to the b
ning scale of the concentration measure in all three flo
The spectra were found to be relatively insensitive to
turbulent flow strength when evaluated at cell sizes equa
2h, 4h, and 8h. The analytical expressions are good pr
dictors of the distribution functions when the derivedf (a)
spectra are used as the exponents. This result implies tha
expressions used for theFV(C) and FM(C) functions, par-
ticularly the logarithmic,a-independent form of the prefac
tors, are correct and may be useful at higher Reynolds n
bers.

St values other than 1

We have focused only on particles that have the strong
tendency to be concentrated, where the St of the particle
close to unity. It is likely that the scaling behavior we ha
discovered would also be found in particle fields charac
ized by St values other than unity. However, the singula
spectra would be expected to have a different relations
betweenf anda from the ones found in this study. For ex
ample, particles with substantially larger or smaller St co
centrate much less, therefore making the minimum value
a larger and the spectrum steeper.

A homogeneous mix of particles with a wide range of
values could also be characterized by a singularity spectr
This type of particle field might be more intimately con
nected with the turbulent energy dissipation process sinc
would be responsive to eddies across the hierarchy of
scales. Thus, we hypothesize that a multifractal analysis
such a mix would reveal singularity spectra more clos
resembling the spectra derived from the energy dissipa
measures of turbulence.
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APPENDIX

The expressions forf (q) anda(q) described by Chhabra
et al. @9# can be written as follows:

S~q!5(
i 51

Nc

Pi
q , ~A1!

a l~q!ln l 5

(
i 51

Nc

Pi
q ln Pi

S~q!
, ~A2!

e

n
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FIG. 3. ~a! FV(C), ~b! FV(.C), ~c! FM(C), ~d! FM(.C) concentration distributions derived directly from the binned particle data s
The binning scale is 2h. Symbols label the three flow cases and the solid lines are the corresponding analytical predictions using thef 2h(a)
derived from theFV(C) distributions. The overall agreement supports the validity of the functional form of the analytical expressio
ll
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f l~q!ln l 5

(
i 51

Nc

Pi
q ln Pi

q2S~q!ln S~q!

S~q!
, ~A3!

wherePi is a normalized measure of the occupancy of cei,
l is the cell size,Nc is the number of nonzero cell measure
andq is a real number between1` and2`.

The derivation of these expressions is based on a for
relationship to thermodynamics that starts with an analo
of the partition function and leads to the Boltzmann avera
that Eqs.~A2! and ~A3! represent. These averages are c
sidered more informative about the values off (a) anda in
cases whenl cannot be taken to zero.Pi represents a prob
ability for measures that arise from multiplicative process
We have assumed in this study that the particle concen
,

al
e
s
-

s.
a-

tions are also a consequence of such processes. The me
we believe is appropriate for the particles and analogou
the dissipation measure used by Chhabraet al. @9# is Pi
[Ni /Np .

The limits l˜0 and Np˜`

Usually the expressions~A2! and ~A3! are defined in the
limit l˜0 or Nc˜`. For a particle concentration field thi
limiting procedure would also require the measureP to reach
convergence asNp˜`. We have taken a more practical a
proach by focusing on howf (a) depends onl. The lower
cutoff on the size of turbulent eddies would prevent sca
invariant behavior in the inertial range from continuing u
abated into scales smaller thanh. Thus, for our purposes, th
limit l˜h is physically meaningful. However,Np˜` needs
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1680 PRE 60HOGAN, CUZZI, AND DOBROVOLSKIS
to be considered in order to verify our assumption that
singularity spectrum, or at least a useful portion of it, co
verges in this limit for values ofl comparable toh. We have
explored the convergence behavior off (a) within the con-
straints that the available computer memory places onNp .
At the smallestl we used we found that a good portion of th
spectrum converged whenNp was such thatNave.2. The
part that converged corresponded to the denser regions o
particle field. The more rarified regions are represented aa
increases towards 3. In this regime, botha and f become
more sensitive to the number of unoccupied cells, which
pends strongly onNp . Unfortunately, we could not makeNp
large enough to fill every cell for the smallest bin sizes us
in our study. As a result,f anda diverge increasingly from
their limiting values asq˜0.

As is clear from Eqs.~A2! and~A3!, summations over al
Nc cells are required for each value ofq. The construction of
the cell measures involves summing over allNp particles,
and this must be repeated every timel is changed. Further
more, bothNp and Nc need to be increased significant
between Rel540 and 140 in order to maintain good partic
statistics and resolve theh-scale particle density fluctuations
Because of the above considerations and the limited time
memory resources available to us on the Cray C90 we
rived more efficient expressions to replace Eqs.~A1!–~A3!.

The cell measuresPi are quantized by the amount 1/Np ;
that is,P can have only valuesPj5 j /Np , j 51,Nmax. This
implies that the summands in Eqs.~A1!–~A3! are also quan-
tized. These summands can then be split into disjoint
ca
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where the elements in a given set are all identical in va
(5Pj ). Multiplying the number of elements of setj by Pj
gives a quantity that represents the total contribution of sj
to the overall sum. Summing over all sets in this way is
equivalent way of evaluating Eqs.~A2! and~A3!. The size of
these disjoint sets is, in our context, equivalent to the volu
of space a set occupies. Thus, we can replace sums over
with sums over disjoint sets weighted by the volum
distribution function for P, FV(Pj ), as ( i 51

Nb (•••)

⇒( j 51
Nmax(•••)FV(Pj), whereNmax is the number ofPj bins.

The advantage of this replacement in our problem is t
Nmax is vastly smaller thanNc whenl'h, and the histogram
of Nmax bins, once built, is used for all values ofq. Nmax
depends onl ,Np , and the efficiency of the particle concen
tration process, but in practice is determined after allNp
particles in all realizations have been binned.

Equations~A1!–~A3! can then be rewritten as

S~q![^Pq&, ~A4!

a l~q!ln l[
^Pq ln P&

^Pq&
, ~A5!

f l~q!ln l[
^Pq ln Pq&2^Pq& ln^Pq&

^Pq&
, ~A6!

where^•••&[( j 51
Nmax

•••FV(Pj) and( j 51
NmaxFV(Pj)dPj51.
nt
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