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Scaling properties of particle density fields formed in simulated turbulent flows
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Direct numerical simulations of particle concentrations in fully developed three-dimensional turbulence were
carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent
fluid fields with Taylor microscale Reynolds numbers (Ref 40, 80, and 140 were generated by solving the
Navier-Stokes equations with pseudospectral methods. Large-scale forcing was used to drive the turbulence
and maintain temporal stationarity. The response of the particles to the fluid was parametrized by the particle
Stokes number St, defined as the ratio of the particle’s stopping time to the mean period of eddies on the
Kolmogorov scale §). In this paper, we consider only passive particles optimally coupled to these eddies
(St=1) because of their tendency to concentrate more than particles with lesser or greater St values. The
trajectories of up to 7810° particles were tracked in the equilibrated turbulent flows until the particle
concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields
was characterized by the multifractal singularity spectfia), derived from measures obtained after binning
particles into cells ranging froms2to 157 in size. We observed strong systematic variation$(of) across
this scale range in all three simulations and conclude that the particle concentration field is not statistically
self-similar across the scale range explored. However, spectra obtained aj,the)2and 8, scales of each
flow case were found to be qualitatively similar. This result suggests that the local structure of the particle
concentration field may be flow independent. The singularity spectra foundsfeiz2d cells were used to
predict concentration distributions in good agreement with those obtained directly from the particle data. This
singularity spectrum has a shape similar to the analogous spectrum derived for the inertial-range energy
dissipation fields of experimental turbulent flows at,R410 and 1100. Based on this agreement, and the
expectation that both dissipation and particle concentration are controlled by the same cascade process, we
hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of
the spatially averaged statistical properties of preferentially concentrated particles in highasrtReent
flows. [S1063-651X%99)00807-1

PACS numbds): 47.27.Eq, 47.1%:j, 47.53+n, 47.55.Kf

I. INTRODUCTION Instead Wang and Maxd¥], Eaton and Fessl¢8], and this
paper use the turnover timsg, of the smallest eddies, on the
Particle-laden turbulent flows have been investigated innner or Kolmogorov scaley, the lowest scale of the turbu-
recent years by direct numerical simulatididNS). A spe-  lent cascade, where energy is dissipated. Particles with St
cial behavior known as preferential concentration has beer-1 so defined preferentially concentrate at spatial scales
described as the tendency of particles to concentrate mosbmparable top [7]. Although it is not clear how turbulent
strongly when their gas drag stopping timeg)(are close to  structures direct the flow of particles into highly concen-
the turnover time of the smallest turbulent structuieddies  trated regions, the process is very sensitive to small devia-
and vortex tubes[1-3]. This effect has also been observedtions of St from this optimum valugs].
in the laboratonf4,5]. In this paper we focus on Stl particles and attempt to
The concentration process has been parametrized by tleharacterize the nonuniform structure of their concentration
Stokes number St, defined as the ratiorgfto some eddy fields in a way that allows statistical predictions to be made
turnover time. Squires and Eatph 2] used the turnover time over a wide range of turbulent flow strengths. We hypoth-
T, Of the largest eddies, on the outer or integral scile esize that the nonuniform particle field is akin to the turbu-
where the energy that drives the turbulence is introducedent energy dissipation field whose statistical properties have
been well described by the so-called “singularity spectrum”
f(a) [9,10]. This spectrum has been shown to be both scale
* Author to whom correspondence should be addressed. Addresgvariant and flow independent in the inertial and dissipation
correspondence to Mail Stop 245-3, NASA Ames Researctrange of scales. Its interpretation as a multifractal dimension
Center, Moffett Field, CA 94035-1000. Electronic address:follows from its role as an exponent relating the spatial dis-
hogan@cosmic.arc.nasa.gov tribution of energy dissipation to scales that span the inertial
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range. We believe the particle density field may also benefitorces imparted to them are calculated. A third-order Taylor

from a multifractal analysis and may be aptly described by aeries interpolation scheme is used to determine force vectors

singularity spectrum. at the folded patrticle positions from their values at the eight
In Sec. Il we present the governing equations and boundrearest neighbor nodes.

ary conditions for the turbulent fluid and the particle trajec- The pseudospectral algorithm’s high degree of parallelism

tories. The numerical methods used to solve these equatioasd vectorizable structure were exploited to implement it

and to evolve both the gas and particles to a statisticallfficiently in the multitasking environment of the NAS Cray

stationary state are described. We also include a table a£90 facility. The particle integrations were also completely

simulation parameters for the three Reynolds numbers weectorized and executed as concurrent tasks on all 16 proces-

studied, and explain why particular values were chosen. Aors.

measure for the particle concentration field and its role in the

multifractal method is described in Sec. Ill. The emphasis in B. Reaching equilibrium

this section is on the practical aspects of determining the . . . .

singularity spectrum. Useful numerical reductions that were. Before a detailed analysis of the part|c|e concentration

employed to optimize the necessary computations are d%eld was made, both the gas and particle components were

rived in the Appendix. Our results and interpretations are th ully evolved to a point of statistical_(_aquilibrium. The initial
subject of Sec. IV wherein we demonstrate how the singu92S state of our first case was specified following the scheme

larity spectrum depends on the spatial binning size of th(?y Lee and Reynold§14], and in subsequent cases the

concentration measure and the flow Reynolds number. Re equilibrated gas fields from previous runs were used. The

A summary including remarks on this work and motivations 925 without particles, was evolvgd until the Kolmogorov
for future work follows in Sec. V. scalg ) reache;d a steady value given bl ,.,=1.3, Where
Kimax IS the maximum useful wave number as determined by

Rogallo’s dealiasing scheme. This was done for a constant
gas viscosity and node spacing by slowly adjusting the forc-
A. Gas and particle equations and boundary conditions ing strength for approximately six periods of the integral
scale eddies. The particles were introduced, after the gas
equilibrated, with zero velocities relative to the computa-
Sional box, and at random locations therein. During the
evolving phase the particles were binned periodically into a

IIl. NUMERICAL SIMULATIONS

The equations governing the velocity field of an incom-
pressible fluid and particles that respond with inertia to th
drag forces are

U; =0, (1) gniform grid of cells, centered over the computational no_des,

in order to compute the rms value of the cell concentrations.

aU; P, The particle concentration field was considered to be equili-
7+Ujui,j =— ?'+ vUj ;. (2 brated when the rms reached a steady value. This typically

took another six large eddy turnover times. Following the
N1 procedure described above, we generated three statistically
— = Ui X(D),t]— V(D) (3y  stationary turbulent fields at Revalues 40, 80, and 140, and
a7 evolved corresponding particle concentration fields contain-
_ L , L ing 1x10°, 10x1CP, and 70x 10° particles, respectively.
whereU is the gas velocityy is the particle velocityPisthe £ oach case, ten temporal realizations of the concentration

gas pressurey is the gas mass density, is the kinematic e |gs separated by roughly one-half of a large eddy period
viscosity, andry, is the particle gas drag stopping time. Equa-\yere produced and archived.

tion (2) is a simplified form derived by Squires and Eafdh
that neglects corrections to the Stokes drag terms by assum-
ing the mass density of a single particle is much greater than
p and the particle size is much smaller thanThe influence The simulation parameters were selected to ensure ad-
of particles on the turbulence by momentum exchange is ng¢quate particle statistics and spatial resolution of the smallest
considered in this study. The gas equations are solved in dlrbulent scales. As the Reynolds number increases, the Kol-
Eulerian frame of reference relative to the mean flow, whilemogorov scale structures shrink according to the scaling law
Eq. (3) is solved in a Lagrangian frame. n%?.GARe;w. More computational nodes are required to
The DNS code utilized in our study uses a modified ver-maintain a fixed resolution of the scale as the Reynolds
sion of the pseudospectral algorithm developed by Rogallmumber is increased. More particles are also needed to main-
and Moin[11,12), and later extended by Squires and Eatontain a useful population of particles within the more numer-
[1] to include gas-coupled particles. The code simulate®us »-scale concentration zones. In all three cases, the num-
forced stationary isotropic turbulence in a three-dimensionaber of particles used was the number necessary to give an
(3D) computational box zr radians on a side. The forcing is overall box-averaged cell concentratioN (o equal to at
introduced at the wave numbkging= V14 with the scheme least 2 for cells 2 on a side. With this value, the initially
described by Eswaran and Po[E3]. Fluid velocities are uniform density of particles produced maximum cell occu-
found on a set of nodes uniformly spaced throughout thgpancies ranging between 200 and 800 particles. Our interest
box. Periodic boundary conditions are imposed on the gai preferentially concentrated particles compelled us to con-
velocities at the sides of the computational domain. So whilesider only 7, values close to the period of-sized eddies.
particles are free to roam outside of the computational boxThis period, known as the dissipation time scalg, was
their modulo 27 positions are employed when the fluid calculated with the formular,=v/e, where € is the

C. Simulation parameters
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TABLE I. Simulation parameters. ement in this analysis. The local measure we use is defined at
a spatial scalé that is normalized relative to the computa-
Parameter Case | Case Il Case Il tional box size. The measure is calculated by binnind\all

particles into a lattice of cubic cellspn a side, that partition

Nodes/side 64 128 288 : . 3
) . the computational volume uniformly intb° cells. Before
Viscosity 0.1 0.025 0.00625 . ; o
. . they are assigned to a cell, particle positions are folded
N, 10° 10 7x10 . . ,
R 39 29 141 modulo 27 back inside the volume to ensure the inclusion of
Texb lent 40 3 12 all simulation particles in the binning precedure. The average
Dl.” ulent energy 204 - 27 occupancyN,,. of a cell for a uniformly distributed particle
Issipation field is N,I°. We define a cell's concentration factor by nor-
”kmaX_ 14 1.3 13 malizing the number of particles found in the ceM,, by
7 (radiang 0.047 0.021 0.0098
\ (radiang 0.44 0.28 0.17 e
A (radiang 0.58 0.44 0.35 Ci=N;/Nge=P;l 3, (4)
Tp 0.021 0.017 0.015 o 3
- 0.022 0.018 0.015 WhereP;=N;/N, is interpretable as a probability measure
T: 0.2 0.3 0.47 and, as such, can be related to the cell size through the defi-
nition
volume-averaged energy dissipati¢n5]. Simulations of Pi=1. )

particle concentrations over a rangefvalues were done

in order to estimate the value that maximized the rms particl Slescrintion of the set of cell concentration factors

number density for bin sizes equal te;2The 7, values for | E limit N0 both P and i b ded

the Rg =40 and 80 cases were found to be quite close to the n the limit Np— 2, bo anda converge to a bounde

dissipation time. The Re=140 case, however, could not be cpntmuum of values. Normal_lzed yolume and mass distribu-

spanned as thoroughly because the computer time availab’i'é)?. funct&ons for(;z] can"be_wntten in forms that relate them,

to us allowed only a fewr, values to be explored. For this to first order, to the cell size,

case we assigneq)_ a value equal ta-,,. Fy(a)da= _p(\/mfﬂ(a)dea, 6)
The input and time-averaged output parameter values for

each case are tabulated in Table I. Lengths are expressedand

radians and times in computational units.

gor a givenl, the set of exponents; provide an alternative

Fu(a)da=—pyIn(1/l) i@ +adqy, 7)
Nl MULTIFRACTAL ANALYSIS wherep is a constant of order unity anfgl(«) is the singu-
Fractal models of intermittence in turbulence have beerarity spectrum Thel subscript serves as a reminder that the
developed to describe the cascade of energy from the largespectrum is in general a function of the cell size. The validity
to smallest eddie§10,16,17. Measures generated by such of theseAnsazehas been demonstrated in an earlier study of
processes are typically highly nonuniform and intermittentthe distribution of nearest neighbor distances of fractal sets
and possess rich scaling properties. The observed scaling [f9].
the velocity structure constants provided the first test of these In this paper we will be interested in the similarly normal-
models[16,18,17. Uniform fractal models, which assumed ized distribution functions fo€ which can be related to the
that turbulent energy was evenly divided among eddies ofbove via the Jacobian transformation that rel&@ds «:
decreasing size, failed to predict these scalings. The assump-
tion of a nonuniform partitioning of energy into smaller ed- Fy(C)dC=Fy(a)(dC/da)da (8)
dies led to multifractal models which proved a better match
to the datd16,18. A key element in the multifractal model and

is the si_ngularity spectrurﬁ(a). It serves as an exponent in Fu(C)dC=Fy(a)(dC/da)de. 9)
the scaling laws for the velocity structure constants and other
statistical measures. The cumulative versions of these distributions are

The methods developed in recent years to analyze a vari-
ety of multifractal measures, including the energy dissipation
field of fully developed turbulence, have inspired us to try
them on the particle concentration fields generated in this
study. This approach is well suited for describing the stationand
ary statistical properties of processes far from equilibrium. In .
this section we describe how the method can be applied to _ | mex
the particle concentration field. We present mathematical ex- Fm(=C)= f Fu(C)dC, (1)
pressions for quantities that characterize the field’s nonuni-
form structure and can serve as exponents in scaling laws favhereC,,, is C’s upper bound.
concentration distribution functions. The Appendix presents parametric expressions advocated

A measure of the particle density field that is local, suit-by Chhabra and co-workef0,9] to evaluatea and f(«)
ably normalized, and captures its nonuniformity is a key el-directly from the set of cell measures. These authors discuss

Crmax
Fy(>C)= fc Fy(C)dC (10
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other direct methods for computing these scaling exponents 31 ' T ;
and point out shortcomings that relate to their sensitivity to I
the logarithmic prefactors present in E¢8) and (7). In the »
Appendix we derive alternative expressions that are more 28 -
computationally efficient and make transparent their connec- I
tion with the volume distribution oP,F,,(P). These expres-

sions are, from Eq9A5) and (A6), 26 - -
( )_(Pq InP) 12 I

@t (P9 In| ! s 24 i _

(P9In P9)— (P9 In (PY) . ]
fi(a)= (13 210
(PHInl I

where( ) denotes an average overweighted byF,(P). 2 -

The expressions above were used to evaluatand f
using discrete estimates &%,(P) derived from the particle

concentration fields generated in our simulations. 18 — 1' : —_— '1'0
(a) Cell Size ( normalized by 7)
IV. RESULTS

3T T T L e LA |

A. a(q), f(q), andf(a) L w ]
1

Both spatial and temporal realizations of the particle con- I // |
centration field were generated and averaged in order tc r2 ]

smooth out fluctuations. The spatial realizations were made
by shifting the origin of the lattice of cells in each direction 2
by half of a cell size. Ten temporal realizations were gener-
ated at intervals of approximately one-half the integral time
scaler, .

For a single snapshot of the particle density field, the «
Fy(P) distributions from all spatial realizations were aver-
aged and the average was used to compudmdf using the
formulas presented in the preceding section. They were
evaluated on a 2D grid of and g values. Thel grid was
uniformly spaced on a logarithmic scale in a range between
27 and 15. The grid of g values was uniformly spaced
between 0 and 20. Linear least squares fits to the set of ©
exponents along thiedirection were made for all values gf
in order to interpolate between and extrapolate beyond the o , L ]
grid points. 1 10

Figure 1 shows howr andf, determined from the Re  (b) Cell Size ( normalized by 7)
=80 simulations, vary witH at a selected set af values. . . )
The abscissa is normalized relative to thecale of the flow. FIG. 1. (@ a and(b) f vs normalized cell size on a linear-log
In general, the exponents show a strong systematic depeH'—Ot for a selected set af values. P_om_ts represent avgraged values
dency on cell size across the grid of scales. This scale dé‘t_alcu_lated from te_n temporal reallzatlpns of_the partl_cle_concentra-
pendence is made more evident in Fig. 2 wheésef () tion field formed in the Rg=80 flow simulations. Solid lines, la-

. beled byq, represent linear least squares fits to the points and are
values are plotted for cell sizes equal tg.247, and 8y at extended to they length scale. For all values gfboth a andf vary
all three Rg values.

strongly with cell size.

B. Correlation dimensions . .
C. Concentration distributions

From the singularity spectra we determined the correla-
tion dimension, defined asa2-f at q=2, for particle con- The singularity spectra shown in Fig. 2 were used to cal-
centrations at the 7 scale. A value of 2.67 was found for all culateF(C) andFy,(C) distributions, using Eqs6)—(9),
three simulations. A study of 2D projections of simulatedfor comparison with their discretized estimates. These pre-
particle concentrations in turbulent channel floj2i] re-  dictions for the differential and cumulative distributions are
ported a value of 1.68 for St1 particles over a spatial scale presented in Figs.(28)—3(d). All discretized distributions in-
where these particles are most concentrated. This comparekided data from all temporal realizations of the particle den-
well with our value after allowing for the difference between sity field. The cell size was 2. The overall agreement sug-
the support dimension of our measyre 3) and theirg = 2). gests that theAnsaze used to represent the distributions
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Re, = 40
Re, = 80
Re, = 140

Energy Dissipation Field

( Meneveau and Sreenivasan, ref [10] )
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V. SUMMARY AND DISCUSSION

In this paper we have investigated the stationary statistical
properties of simulated number density fields of particles
preferentially concentrated in turbulent flows. Singularity
spectra, characterizing the nonuniformity of these fields,
were derived to be used as exponents in analytical expres-
sions for theF(C) andFy,(C) distributions. We found that
the functional form of these spectra is sensitive to the bin-
ning scale of the concentration measure in all three flows.
The spectra were found to be relatively insensitive to the
turbulent flow strength when evaluated at cell sizes equal to
27, 47, and 8y. The analytical expressions are good pre-
dictors of the distribution functions when the derivedy)
spectra are used as the exponents. This result implies that the
expressions used for the,(C) and F\,(C) functions, par-
ticularly the logarithmic,«-independent form of the prefac-
tors, are correct and may be useful at higher Reynolds num-

L o bers,

St values other than 1

FIG. 2. Plots off(a) vs « at cell sizes corresponding tor2 We have focused only on particles that have the strongest
47, and 8. Thef_and_a values were taken from Ilne_flts similar to tendency to be concentrated, where the St of the particles is
the ones shown in Figs.(d) and 1b). Symbols starting from the  ¢jose to unity. It is likely that the scaling behavior we have
right correspond taj values 0,1,2,3,4,5,7,10,20. The error bars areyis;oyered would also be found in particle fields character-
the rms values derived from ten temporal realizations. The) ;o4 by St values other than unity. However, the singularity
curves f.or cases Re 40 (t.”angles‘ Rg,=80 (squares and Re spectra would be expected to have a different relationship
=140(circles have a similiar shape at all three length scales. Operbetweenf and a from the ones found in this study. For ex-
circles are a composite df @) points presented in Fig. 10 of Me- . . . )

. e ample, particles with substantially larger or smaller St con-
neveau and Sreenivasiio] for turbulent energy dissipation de- cen[iratepmuch less, therefore maykin gthe minimum value of
rived from laboratory (Re=100) and atmospheric (Re 1100) larger and the sp,ectrum siceper 9
data. a :

A homogeneous mix of particles with a wide range of St

. ) ) values could also be characterized by a singularity spectrum.
analytically are valid. The divergence at sm@lls probably  this type of particle field might be more intimately con-

due to the undersampling effects discussed in the Appendifigcted with the turbulent energy dissipation process since it

would be responsive to eddies across the hierarchy of size
scales. Thus, we hypothesize that a multifractal analysis of

Velocity derivatives and passive turbulence scalars havéuch @ mix would reveal singularity spectra more closely
previously been shown to have a multifractal charactefesembling the spectra derived from the energy dissipation
[18,22. Specifically, the multifractal character of energy dis- measures of turbulence.
sipation in turbulence is believed to be the result of a cas-
cading process where energy at the largest scale trickles
down to smaller scales in a nonuniform manh&é]. The

. . T , We thank the Planetary Geology and Geophysics Pro-
singularity spectrum for energy dissipation has been derived o
fror% Iabo¥atgry atmosphericggnd nu?nerical d&23). The gram, and the Origins of Solar Systems Programs of NASA

spectrum shown by open circles in Fig. 2, taken from Fig. 1 or support, and the NAS facility at Ames Research Center

in Meneveau and Sreenivasgl0], is a composite of results I? rlgosmz?r?;'?gflhﬁs]?ul:rgg;vgy:aﬁgsﬁstgindki& rr]}nvegolggd
from flows at Rg=100 and 1100. yie =q b ' y

The shape and extent of the dissipation spectrum are ver'y“ke Rogers for their critical reviews of the manuscript.

similiar to the singularity spectra for particle concentration,
especially at the lowr end where dissipation and concentra-
tion are both greatest. The divergence between the concen- The expressions fa(q) anda(q) described by Chhabra
tration spectra towarda =3 reflects the incompleteness of et al.[9] can be written as follows:

the particle concentration measure, due to an insufficient

D. The energy dissipation field
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APPENDIX

number of particles to fill all the cellssee Appendix We Ne

point out that the qualitative agreement in Fig. 2 may suggest S(Q):El P, (A1)
a deep connection between the cascade process, presumed to

control the flow of turbulent energy to smaller scales, and the N¢

process of particle concentration. This notion is consistent 2 P In P,

with the fact that strain rate is an important shared property i=1

a|(q)InI=—|7 S . (A2)

of both particle accumulatiof24,2] and dissipation. q)
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FIG. 3. (a) Fy(C), (b) Fy(>C), (c) Fu(C), (d) F(>C) concentration distributions derived directly from the binned particle data sets.
The binning scale is 3. Symbols label the three flow cases and the solid lines are the corresponding analytical predictions tisijjfgthe
derived from the~(C) distributions. The overall agreement supports the validity of the functional form of the analytical expressions.

N¢ tions are also a consequence of such processes. The measure
2 PiIn P{—S(q)In S(q) we believe is appropriate for the particles and analogous to
=1 the dissipation measure used by Chhabtal. [9] is P;
fi(q)Inl= , A3 i
(@) 5O o

whereP; is a normalized measure of the occupancy of gell
I is the cell sizeN, is the number of nonzero cell measures,
andq is a real number betweehc and —oe. Usually the expression@\2) and(A3) are defined in the
The derivation of these expressions is based on a formdimit | -0 or N.—. For a particle concentration field this
relationship to thermodynamics that starts with an analoguémiting procedure would also require the measBr® reach
of the partition function and leads to the Boltzmann averagesonvergence all,—c«. We have taken a more practical ap-
that Egs.(A2) and (A3) represent. These averages are conproach by focusing on hovi(«) depends on. The lower
sidered more informative about the valuesféf) and« in  cutoff on the size of turbulent eddies would prevent scale-
cases whem cannot be taken to zer®; represents a prob- invariant behavior in the inertial range from continuing un-
ability for measures that arise from multiplicative processesabated into scales smaller thgnThus, for our purposes, the
We have assumed in this study that the particle concentrdimit | — 7 is physically meaningful. HoweveN,—~ needs

The limits | -0 and N,— o
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to be considered in order to verify our assumption that thevhere the elements in a given set are all identical in value
singularity spectrum, or at least a useful portion of it, con-(=P;). Multiplying the number of elements of sgtoy P;
verges in this limit for values dfcomparable ta;. We have gives a quantity that represents the total contribution of set
explored the convergence behaviorfd¢tr) within the con-  to the overall sum. Summing over all sets in this way is an
straints that the available computer memory placedNgn  equivalent way of evaluating Eq&\2) and(A3). The size of
At the smallest we used we found that a good portion of the these disjoint sets is, in our context, equivalent to the volume
spectrum converged whel, was such thaN,,>2. The of space a set occupies. Thus, we can replace sums over cells
part that converged corresponded to the denser regions of thgth sums over disjoint sets weighted by the volume
particle field. The more rarified regions are represented as distribution function for P, Fy(P;), as EiN:bl(. )
increases 'tcl)wards 3. In this regime, bcai_handf become 22;\@;«“'),:\/('3]_), whereN o is the number of; bins.
more sensitive to the number of unoccupied cells, which de- The advantage of this replacement in our problem is that
e o L My Vasly maller el hen! ~ , and he istoram
9 9 y f Nmax Dins, once built, is used for all values gf Nax

in our study. As a resulf, and « diverge increasingly from depends o, N,,, and the efficiency of the particle concen-

their limiting values ag}—0. : . C .
. . tration process, but in practice is determined after Nyl
As is clear from Eqs(A2) and(A3), summations over all particles in all realizations have been binned.

N, cells are requwe(_j for each valug@fThe construct}on of Equations(A1)—(A3) can then be rewritten as
the cell measures involves summing over Id}j particles,

and this must be repeated every tiis changed. Further- S(q)=(PY), (A4)
more, bothN, and N, need to be increased significantly
between Rg=40 and 140 in order to maintain good particle (PYInP)
statistics and resolve thg-scale particle density fluctuations. a(q)lnl=-———, (A5)
Because of the above considerations and the limited time and (P9
memory resources available to us on the Cray C90 we de-
rived more efficient expressions to replace Hdsl)—(A3). (P91n P9 —(P%In(PY)
The cell measureB; are quantized by the amountNly/; fi(g)inl= , (AB6)

that is,P can have only valueB;=j/N,, j=1Npya. This

implies that the summands in Ed&1)—(A3) are also quan-

(P%)

tized. These summands can then be split into disjoint setahere(- - ~>EE;\'§5‘X~~~FV(P1) andE;\':mf)FV(Pj)de:l.
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